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SUMMARY

This paper considers a fixed (possibly infinite) set of distributed
asynchronous processes which at various times are willing to communicate
with each other.

Fach process has various ports, cvach of which is uscd for communication
with a distinct neighbour process. Each process can have at most one port
open at any time and its other ports must be closed. Two processes aandsnake
over a time interval A if their respective ports are open for mutual
communication during this interval. Note that the handsliuke relation is a
matching. Successful communication requires a handshake of at least 1 step
of each process; during the one steyp overlap, a message can be transmitted
between processes. The problem is to synchronize processcs (via a distributed
scheduler) so that they can successfully handshake at their will, given that
the means of synchronization is some low level construct which does not
guarantee the handshake property if used in an unsophisticated way.

We describe probabilistic distributed algorithms for synchronizing
processes so that they can handshake at will. The means of synchronization
are boolean "flag" variables, each of which can be written by only one
process and read by at most one other process. The use of flag variables
seems as to require the fewest assumptions possible without considering

specific systems.t A process is considercd to be tame over a time interval 4
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Real-Time Synchronization of Interprocess Communications

20. (Continued)

if its speed varies within certain arbitrarily fixed nonzero bounds.

We show our synchronization algorithms have real time responsge:

If a pair of processes are mutually willing to communicate within a

time interval A of length at least a cgiven constant and the pair are tame

oti A, then they establish commuaication within A with high likelihcod (for

the worst case behavior of the system and the expected time for establishment

of communication is also constant. We feel the term real time is merited,

for the actual timc needed for establishment of communication is upper

bounded by a constant with overwhelming probability; furthermore, violatiouns

of this property occur with vanishingly low likelihood.

o LT i OO T

We have very few assumptions: (1) Tameness is required of a process

only during the interval it is willing to communicate (if the tamcness

property 1is5 violated during that interval, then there may be lower probability

of successful communication); at other times any process may dynamically vary

its speed arbitrarily and may cven die. (2) The processcs may be willing to

communicate with a time varying set of processcs which are only bounded in

number. There are no probability assumptions about system behavior.

Our communication model and synchronization algorithms are quite robust.
They are applied, in [Reif, Spirakis, 82B] and in our Appendix, to solve a
large class of rcal time resource allocation problems, as well as real time
implementation of the synchronization primitives of Hoare's multiprocessing

language CSP.
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SUMMARY

This paper considers a fixed (possibly infinite) set of distributed
asynchronous processes which at various times are willing to communicate
with each other.

Each process has various ports, each of which is used for communication
with a distinct neighbour process. Each process can have at most one port
open at any time and its other ports must be closed. Two processes N@LGEnaxe
over a time interval A if their respective ports are open for mutual
communication during this interval. Note that the handshake relation is a
matching. Successful communication requires a handshake of at least 1 step
of each process; during the one step overlap, a message can be transmitted
between processes. The problem is to synchronize processes (via a distributed
scheduler) so that they can successfully handshake at their will, given that
the means of synchronization is some low level construct which does not
guarantee the handshake property if used in an unsophisticated way.

We describe probabilistic distributed algorithms for synchronizing
processes so that they can handshake at will. The means of synchronization
are boolean "flag" variables, each of which can be written by only one
process and read by at most one other process. The use of flag variakties

seems as to require the fewest assumptions possible without considering

I~

specific systems.+ A process is considered to be tame over a time interval

+ Note that we do not use any standard high level synchronization
construct such as shared variables with a mutual exclusion mechanism. If we
did, then we would have to assume an implementation of such a mechanism and
there are no real time implementations of such mechanisms (in fact, there is
no bounded time implementation of such mechanisms when processes run on
different processors). We hope in the future that our techniques rather than
other "standard” but inefficient synchronization mechanisms will be utilized
for real time process synchronization.
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if its speed varies within certain arbitrarily fixed nonzero bounds.

We show our synchronization algorithms have real time response:

If a pair of processes are mutually willing to communicate within a
time interval 4 of length at least a given constant and the pair are tame
on A, then they establish communication within A with high likelihood (for
the worst case behavior of the system and the expected time for establishment
of communication is also constant. We feel the term real time is merited,
for the actual time needed for establishment of communication is upper
bounded by a constant with overwhelming probability; furthermore, violations
of this property occur with vanishingly low likelihood.

We have very few assumptions: (1) Tameness is required of a process
only during the interval it is willing to communicate (if the tameness
property is violated Quring that interval, then there may be lower probability
of successful communication); at other times any process may dynamically vary
its speed arbitrarily and may even die. (2) The processes may be willing to
communicate with a time varying set of processes which are only bounded in
number. There are 710 probability assumptions about system behavior.

Our communication model and synchronization algorithms are guite robust.
They are applied, in [Reif, Spirakis, 82B] and in our Appendix, to solve a
large class of real time resource allocation problems, as well as real time
implementation oi the synchronization primitives of Hoare's multiprocessing

language CSP.
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1. INTRODUCTION

Recently, [Rabin, 80) [Lehman and Rabin, 81), and [Francez and Rodeh,

80) have proposed probabilistic algorithms for a number of synchronization

problems. This probabilistic approach (where we make no probabilistic

assumptions about the system behavior, but allow our algorithms to make
probabilistic choices) leads to considerably simpler algorithms (perhaps
because of the locality of their decisions) and shorter procfs (perhaps
because the proofs of the corresponding deterministic algorithms had to
consider complex situations which would have very low probability, if
probabilistic choices were taken, whereas, in proofs of probabilistié

algorithms, we need only consider those simple situations which occur with

high probability). The probabilistic approach may also lead to improvement
in the efficiency of synchronization algorithms. An improvement in space
efficiency is seen in [Rabin, 80). We demonstrate here that a considerable
improvement in time efficiency can be made by probabilistic synchronization.

This paper takes the probabilistic approach to synchronizatio. of
communication in a network of distributed, asynchronous processes. We are
interested in direct interprocess communication, rather than packet switching
as considered in [valiant, 80]. Furthermore, we consider handshake communica-
tion (as in Hoare's CSP), rather than buffered communication (which is very
easy to implement by message gueues).

Previously [Schwarz, 80] proposed a deterministic synchronization
algorithm for implementing CSP {Hoare, 78] on a fixed acyclic distributed

network. Also [Lynch, 80] gave a related algorithm for resource synchroniza-

tion problems. Both algorithms are considerably less time efficient than our
proposed algorithm (for specific comparison of time performance, see

Section 2.E). ([Francez and Rodeh, 80] also propose a probabilistic solution
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to synchronization of communication, but make no consideration of the time
efficiency of their solution.

Our paper is organized as follows: We present in Section 2 a model for
distributed communication systems; the model ignores the details of message
transmission but gives a precise combinatorial specification (by time varying
graphs) of the communication synchronization problem. This model also allows
a precise definition of the relevant complexity measures of synchronization
algorithms, such as response time. Section 3 presents our synchronization
algorithms, and in Section 4 we prove various properties of the synchronizaticn
algorithms which must hold with certainty, regardless of probabilistic choice.
Sections 5 and 6 give a probabilistic analysis of the performance of our
algorithms. We have taken considerable effort in the design of our synchroni-
zation algorithms to improve their expected time performance. Nevertheless,
our algorithms are very simple in conception and practice. The Appendix
provides a real time implementation of CSP. [Reif, Spirakis, 82B] presents
a further application: a real time resource granting system. We feel these

applications demonstrate the broad applicability of our synchronization

algorithms.




e o e e i~ et

2.0 OUR MODEL FOR A DISTRIBUTED COMMUNICATION SYSTEM (DCS) AND ITS
COMPLEXITY MEASURES

Let 5={1,2,...} be a fixed, (possibly infinite) collection of
processes. We assume a (global) timec t, on the nonegative real line (0,%],
whereby events of the system are totally ordered. The processes of I. are
asynchronous; their speeds may dynamically vary arbitrarily over time and
may even be 0. (Thus, we allow processes to die.) The processes have no
access to any global clock giving the time.

We assume that the effect of a read or write is instantaneous and that
these events occur at distinct time instants, so there are never any
read/write conflicts. In general, a ster of a process is a finite time
interval 4 in which a single instruction is instantaneously executed at
the last moment of 4.

We also assume a global oracle &/ which directs the willingness of
processes to communicate with each other. (Note that, in apprlications of
our distributed communication system occurring in practice, no such oracle
exists, but instead each process is running some program which requires f-om
time to time communication with other processes. An implementation of the
DCS synchronizes this communication. The oracle .of is utilized as an
artificial device for specifying worst case situations of our system where
communications are required by .o/ to be made at times most difficult for our
implementation.)

Intuitively, each process i wishes at various times to communicate
with processes in Il-{i}. All communication required by the oracle is

implemented by i rather than a global centralized synchronization mechanism.

e
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Thus system-wide communication is implemented by a distributed scheduler,
the processes of [I.

The formal model DCS (for Jistributed Communication System) described
below, has been designed with as few assumptions as possible and as general
as possible. We are not concerned with the values of the messazes communi-
cated between the processes, but instead, with simply the eszalii{srmen: of
communication. This allows us to avoid any message system dependent assump-
tions which may vary for any given application.

We now introduce some graphs to describe precisely the DCS model. The
graphs allow us to state the synchronization problems precisely as :ombira-
torial problems on time varying graphs. We give an intuitive description cf
the importance of these graphs as they are defined.

Let the connections grar2 H = (I,E) be a (possibly infinite) undirected
graph with vertex set Il and undirected edge set E = (ixIl) - {(i,i)|i€h;
Then {i,j} €E denotes that i€l is phusically cble to commumicate with
j€i - {i} (See Figure 1A). H is fixed for all time and can be considered
to be essentially the hardware connections between processes of . We
assume H has finite valence (i.e. only a finite number of processes are
connected to any given process i€il).

For each time t > 0, the willingness digrarh G, = (1,) is a possibly
infinite digraph with vertices [l and directed edges given by relation

__Z..g Ixl (See Figure 1B). Then i j denotes that i €ll is willing

-
t
to commmicate with j €Il - {i} at time t. 1In that sense we say i is the
source and j is the target. We require that i 7 j implies {i,j)€E

so i is willing to communicate only with processes which 1 is able to

communicate with. Also, let i *E*j iff both i : j and 3j g i. We use




and to denote that the willingness to communicate holds over time

— —
Jat L
intervals. For each time interval A on (0,®), let i Z j if i e j for

all t€2 and let i*z*j if both i z j and 3 7 i. The edges of Gt

departing from i€]l are assumed to be stored locally at i in the form of

a variable set Ei which, at time t, contains the names of the targets of 1i.

Ei is specified by the oracle and read only by 1i.

In the following we assume that there exists a given fixed integer
constant v > 0 such that Vi€li, Vvt > 0, the outdegree of i in G, (i.e.,
the cardinality of {jli-t—'j}) is bounded above by v.

Assumption Al Two-way communication between any two processes i,jel

requires only one step of i and j. (Thus, i,j are assumed to communicate

in short "bursts.")

2.A Implementation of a DCS

An implementation of a DCS assigns a fixed program to each of the
processes of Il. The implementation is summetric if the programs are indepen-
dent of the position of i in the connections graph H.

For each 1i,jell such that {i,j}€E we have a commmication port flag
PORTi'j (written only by process i) which is 1 at time t > 0 if i
has opened its port for communication with j at t, and 0O otherwise
(indicating the communication port from i to j is closed at t). We
assume 2-way communication between i,j is possible at any time that both
PORTi'j and PORTj'i are simultaneously 1, but we make no particular
agssumptions (beyond Al and A2 below) about this communication.

Let i -ﬁivxqj denote that PORTi’j =1 at time t. For each t > 0

our implementation defines a (possibly infinite) directed graph Ht with

——- .
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vertices [l and directed edges given by the relation “f;““—’ C nxi. Let
i"f‘;v"‘*j if both 1 J\;V\"j ard j ‘J:v\‘?i. If i “/;'/"’j then we say

i nas opered commmnmication with 3J€I -{i} at t. If i *“:“*’j then we

say 1i,)

azhieve mutual comranicaticn at time t. Also, we extend the

notation to intervals 4 on (0,*) as for G .

t

Assumption A2 If i —Z” j and not i —;* .o, >t

for some

i.e. the coracle

i 2 2 !

then

i«

A€[tl,t9), where L contains at least one step of each i and J

communlczaticn has been establisiec and completed.

~n inplementation

R1

RZ

Note

*~/‘{\ﬁ j only if i *;* j

can withdraw willingness to communicate only after

is rrerer if it satisfies the following restrictions:

S is a (partial) matching: if 1*’* \’3 then not

i~ j' for any J'€l-{j..

that Rl dimplies that 1 opens communication with

j ornly 1if

i, are simultanecusly willing to communicate. R2 implies that

nc. communicate with more than one prccess at a time.

i

does

It is standard in the study of combinatorial algorithms to specify

the combinatcrial problem before giving algorithms for the solution.

We have

precisely described the problem of determining a DCS implementation as a

combinatorial problem on dynamic graphs.

irplementations satisfying both these restrictions.

ta: -n is descriked in [Reif, Spirakis, 81B]}.

Later we shall propose two

Still another implemen-
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2.B. Global State of the DCS

For each t > 0, let Rt be a mapping from ]I to the nonnegative
reals giving the speed of each process of I at time t. We assume the
speed schedule R = (Rtlt > 0} is chosen by an adverse oracle {possibly
our scheduler's worst "enemy") a priori (at time t = 0.) Also, we assume
for each t > 0, .of chooses for the process=s of [ the willingness digraph
Gc at time ¢t. Thus, Gt may vary dynamically in time, depending on the
choices of the oracle .. However, for each t > 0, the digraph M is

defined by the processes of II, which attempt a distributed synchronization

of the DCS, depending on our given implementation. In addition, we allow the

processes of I to make independent probabilistic choices.

Let Lt, the luck up to time t, to be the probabilistic choices made i

by the processes of I, up to time t. Then, the global system state at

time t is given by

= < >
Zt Rt'Gt'Mt'Lt't

and the global history up to time t is

Thus, we have a probabilistic multiplayer game of incomplete information,
where the omnipotent oracle . plays against the team of processes of Il
which have only incomplete information on the current state of the system,

We wish measures of the success of the processes of II.

vﬁJ-h-‘-.-.--III.I-II.llIlIlIIIlI-IIIII...IIIIIIII--nmv1~r o seren + e il



2.C. Time Complexity of a DCS Implementation

A process Step consists of either an assignment of a variable, a test,
a logical or arithmetic operator, or a no-op.

Let process i be tame on an interval A, if for any interval
A' € [0,»), if A' intersects A and &' is a single step of process i,
then |A']€ (x 1, where r . , r are fixed real constants and

. X
min’ “max min' “max

o< rminsgrmax' (without loss of generality we assume that rmax/rmin is
an integer.)

We shall not assume that processes are tame at all times. Our DCS
implementation will be proper regardless of whether processes are tame as
long as their speeds are nonzero.

Let processes i,3j have successful commmnmication at interval L if
i +w?r—vj and A contains at least one step of both i and j. We say A
is a response interval for processes 1i,j if A is a maximal time inter-
val such that

1) i<p3,

(2) 4i,j are both tame on 4, and

(3) i,3 have successful communication at most just at the end of

A, if at all.

Note that if there is successful communication during an interval A°'
within A, then, by (3), A' is a suffix of A. Also, note that since
is maximal, either i,j were not mutually willing to communicate
immediately before A, or & begins at time O, or the instant immediately
before A is the end of a previous response interval.

Let a communication request be R= (t,i,j) such that t is the

starting instance of a response interval for processes 1i,j.



Note that there is a unique communication request associated with
each response interval.

Let the response time of a DCS implementation, for any oracle o
and communication request R, be the random variable Tal,R giving the
length of the response interval associated with R. Let ;==max{mean{TdJ,R}
for each oracle ¥ and communication request R!.

For each €, 0€€<€1, let the €-error respcnse T(E) (note: this
is a function, not a random variable) be the least upper bound on the set
of the values of the inverse functions of the cumulative distribution
functions of TJ{,R at 1-£, for all & and R. Thus, if we have a
finite interval 4, |A|27T(e) and any two processes 1i,j which are tame
on XA, for all oracles .« i 7? 3 implies i,j have successful communica-
tions sometime within A with probability =2l-€.

Note that time response as defined above for pairs of processes also
holds for communication between sets of processes. Suppose we have finite

sets or processes Il I,eT such that {nl[, {ﬂ2‘<v and for the same

l'
interval A of length 2T(e) and for all i in Hl and all j in HZ’

i 7? j. Then, each process i of Hl is guaranteed at least (1-5,372:
probability of successful communication with all the processes of HZ'
within A. This implies a very robust tyre of fairness.

The DCS implementation is reagl time if for all g, 0<e<€1, T{(£)
is a constant dependent only on v (assumed to be a constant upper bound

on the outdegree of vertices of Gt)' Note then that T is also bounded

above by a fixed constant dependent only on wv.
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2.D. Preferential DCS Implementations

We also consider the cases where any given process i€l may assign
a priority to the processes j €I -{i} which i wishes to communicate
with. In the simplest case, which we only consider here, i distinguishes
the first target of communication, Ei(l), which 1 prefers to communicate
with. (Process 1 may communicate with the other processes of Ei, but 1
prefers to communicate with Ei(l).)

For each t=20, I' is the relation on 11 xII such that Vi, j€
i-*t'j iff Ei(1)=j at time t. Also let i-’A'j if i-::'j Vt € L.

We say A is a preferential respomse interval for i,j if L is a
maximal interval such that

() i~>'3j and j

(2) 1i,j are both tame on £, and

(3) i,3 have successful communication at most just at the end of .,

if at all, i.e. if i(—j§}~ j then 4' 1is a suffix of 4.

{Note that only the first process has to distinguish the other as the first
target.)

Let a preferential communication request R= (t,i,j) be such that
t is the starting instant of a preferential response interval for 1i,j.
Note that there is a unique R associated with each response interval.

We now define the time complexity of preferential DCS implementations in a

similar way: Let the preferential response time of a DCS implementation J
for any oracle ./ and preferential communication request R be the random
variable TLJ,R which gives the length of the preferential response
interval associated with R.

Let T'=max{mean{7T', _} for all oracles ./ and communication

o, R

requests R}.




~11-

For each €, 0<eX1, let the €-error preferentiql resycovee  ~'(2) Lbe
the least upper bound on the set of the values of the inverse functions of

the cumulative distribution functions of < each evaluated at 1-g,

o, R’
for all &/ and R.

Thus, if we have a finite interval &, |4, 271'(c) and any two
processes 1i,j which are tame on 4, for every oracle o/, (i'z' j ana
j K i) implies 1,3 have successful communication sometimes within <%,
with probability 2l-¢.

The DCS implementation has real time rrefercntiel resprence if for all
€, 0<e<1, 7°(e) 1is a constant dependent only on v (and not on any para-
meter of H). Note then that T' is also bounded above by a constant
dependent only on wv.

It is useful tc observe that, given 7T1'(€), any given proces 1€
may determine (with any given probability) whether any process 3j€ 0 - {i!}
is willing to communicate with 1 over a given time interval in which

both 1i,j are tame, given {i,j}€H. The same holds if 7T(c) 1is given

instead of T'(g).

PROPOSITION 2.1. Let f be any oracle and A be ary time interval
of finite length 21(€) (1'(e) 1in the case of preferential DCS.)
Suprose i,j are tame on 4L and {i,j} €H. If there is no t€4& suckh

that i o—f't"\-o j, then 3 1is not willing to communicate with i sometime

within A, with probability 2l-c.

This proposition may be used for timing out requests (or preferential
requests) to communicate with a specific process.
{Note: Suppose we are given a process 3j, a set of processes

HIEH and an interval A27T'(e) such that for all i€ﬂ1, i -2' j and

e e e e
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3 7 i. BAssume also, all processes in HlLJ{j} are tame on L. Then, for
each iélﬂl and for all oracles ¢, i,j have successful communication
!
sometime with 4, with probability 21l~€. Furthermore, if [HI[an then, i
|

for all oracles 4/, j will have successful communcation with all 1€
Iy ]

1

within A, with probability 2(l-€)

2.E. Results and Previous Work

The primary results of this paper are:

There is a proper real time implementation of DCS such that

(1) the worst case mean response T is O(v2).

(2) the €-error response T(€) is O(v2 1og(§)).

Also, there is a real time preferential implementatior. of DCS such that

(1) worst case mean preferential response 1' is O(v);

(2) the e-error preferential response 7T'(e) 1is Ofv log(é)).

Our implementations are proper, symmetric, and are completely inde-
pendent of the connection graph H (H may be any finite or infinite graph
with finite valence). We allow processes to make probabilistic choices and
show that our algorithms have real time response.

The best previous result is due to [Schwarz, 80] and is restricted to
the case H is finite and its edges can be directed to form a digraph &'
which is acyclic. Let ¥ (H) be the minimum vertex coloring of any such &k'.
Essentially, the technique of [Schwarz, 80) is to color H' and order the

precedence of message transmissions by the coloring. Delays in message

transmissions can be as long as X(H) since chains of processes (of length
X{H)) can be formed in which each process waits for the next to reply. So

the deterministic DCS implementation of [Schwarz, 80] has preferential resyponse
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time T1' lower bounded by v°x(H). Note that his implementation is not
recl time, since in general X(H) is of size |lI|. 1In contrast, in our
implementation, the time-varying willingness digraph is assumed to have
bounded outdegree, but we see no way of Schwarz's algorithm to take ad-
vantage of this. Also, his DCS implementation is not symmetric, since
processes are required to know their color in H'.

Also, [Lynch, 80) gives a solution to a distributed resource alloca-
tion problem which in [Reif, Spirakis, 82B] is adopted to yield a DCS
implementation with response time vy (H). In [Reif, Spirakis, 82B] we show
that a ciass of generalized rescurce allocation problems related to those
of [Lynch, 80} may be solved in real time by our DCS implementation (with
vanishingly small probability of violation of the real time property).

[Francez, Rodeh, 80) proposed a probabilistic synchronization algorithm
which can be considered to be DCS implementation. An important difference
between our implementation and theirs is that in the responding phase, in
our algorithms, each process reponds to all processes to which it is
willing to communicate, while in [Francez, Rodeh, 80] only one process is
considered at a time. Although [Francez, Rodeh, 80] make no explicit
timing assumptions, they do assume that setting and resetting of shared
variables takes only a negligible time compared to the waiting time of
processes, which is a much stronger assumption than ours. The careful
consideration of timing in our paper is crucial to our achievement of real
time response (see also the analysis) and such timing considerations were

essentially not considered in any previous papers on synchronization.
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3. OUR IMPLEMENTATION OF A DCS

To implement a DCS, we must give an algorithm for each process in
We present here two such implementations. Both satisfy restrictions R1l, R2
required by proper implementations, and both are symmetric: Each process
has the same algorithm regardless of its position in the graph H.
Processes have Algorithm 1 in our "non-preferential" implementatiorn, and
Algorithm 2 in our "preferential" implementation. We show in Section 4 that
both implementations have real time response.

Each program variable X of the system may be written by exactly one
process i€Il and either X 1is read by only one other process 3j€I-{i’
(in this case X 1is a flag from i to 3Jj) or X is local to i (X 1is
read only by 1i).

Our following description of the DCS implementations will be givern
top-down with a high level specification of the algorithms given first and
then a specification of the procedures ASK,RESPOND which they call. (The
procedures ASK,RESPOND utilize numerous flag variables which are
irrelevant to the overall understanding of our algorithms.) Alsc, before
giving the formal specifications of any algorithm or procedure, we provide
an informal description of its actions. The actual formal algorithms have
been written carefully to satisfy certain timing restrictions required by
our analysis to achieve real time response.

In both algorithms, each process repeatedly throws a fair coin and
then executes a phase. Each phase is either asking or responding and is
chosen by the coin throw with probability 1/2. This is used to ensure

each process is in either phase half of the time or the average.
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Informal Description of the Non-preferential Algorithm 1

In a responding phase, process 1 repeats a loop m times, where

T
max . . .
m= (v+3) - P + 1. On each iteration of the loop, process i chooses at

min

random a process j from the processes i is willing to communicate with,
and executes procedure RESPONDi(j). This procedure takes constant R
number of steps. During these steps process i reads a flag to determine if
j has recently been willing to talk to 1 and then sets a flag so as to
later verify that Jj pays attention to 1i. These verifications are done by
handshakes. (A handshake is the use of boolean flags to verify exchaﬂge of
a single bit of information). 1If so, processes i and J synchronize their
steps and then both open communication to each other. In either case, i
repeats the loop until the corresponding phase finishes.

In an asking phase, process 1 chooses only once at random a process
3 with which 1 is willing to communicate, and then 1 executes procedure
Asxi(j). This procedure takes Cp¥ g’ steps (so that both phases take
exactly the same number of steps. As a conseguence, process 1 1is in each
phase half of the time on the average. This is important to the analysis).
During procedure ASKi(j), process i raises a flag to show to j that it is
currently willing to communicate with j, and then pays attention to Jj for a
limited number of steps to test if Jj responds to the attempt and wants to
proceed in communication. If so, then processes i and j synchronize their
steps and then both open communication to each other. 1If not, then i

finishes its current phase by setting its flags to O.




Informal Description for the Preferential Algorithm 2

Each process 1i executes forever the following loop:

It chooses with probability 1/2 to execute a respond phase or a
modified ask phase. The respond phase is identical to that of Algorithm 1.
However, in the modified ask phase, process 1 chooses the distinguished

first process Ei(l) as the process to which it will apply the procedure
ASK. . d
i }

Formal Definitions of Algorithms 1 and 2

We now give Algorithms 1 and 2 in full Getail.

Algorithm 1 (non-preferential implementation)
Program for process i€l

INITIALIZE; ( );
WHILE TRUE DO
BEGIN

L2: CHOOSE a random b€ {0,1}
IF b=0 THEN
BEGIN
COMMENT: respond phase
L3: FOR x=1 to m DO
BEGIN
CHOOSE at random jEEi
RESPOND, (3) ;
END
END
ELSE
BEGIN
COMMENT: ask phase
L4: CHOOSE at random j€li::.L
Asxi(j)
END
END
oD

—_— y
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Algorithm 2 (the preferential implementation)
Program for process 1€l

INITIALIZE; ( )
WHILE TRUE DO
BEGIN
Ll: CHOOSE a random b€ {0,1}
IF b=0 THEN
BEGIN
COMMENT: respond phase
L3: FOR x=1 to m DO
BEGIN
CHOCSE a random j€ Ei
RESPOND, (j)
END

END
ELSE
BEGIN
COMMENT: ask phase
L4: ASKi(Ei(l))
END
END

3.a. Intuitive Description of the Procedures ASK,RESPOND

The procedures I\SKi,RESPOI\IDi are utilized by both algorithms.

For each i,j€1l such that {i,j}€H there are three flags (boolean

variables) Qij' Aij' Bi. which are written cnly by 1 and read onlv by 3.

(1) Flag Qij: Just before each phase, Qij=0. Then 1 asks 3 by
setting Qij to 1 in the ask gphase. Qij is reset to 0 before
the end of the ask ise.

(2) Flag Aij: Just before each phase, Aij =0. If i 1is in the
responding phase and detects jS= 1 (indicating 3j T"asks" 1i)

then i answers j by setting Aij =1. Before the end of the

answer phase, i resets Aij to 0.
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(3) Flag Bij: This variable is set to 1 by 1 only during tre

"watehing window" which is the interval when 1 is in the
asking phase and is watching for an answer (Aij= 1) from 1.
At all other times, Bij is set to 0 to indicate 1 is f_.7nzZ
to answers by 3J.

Another flag PORTij is utilized by the low level procedure CFEKR-CONM
to specify the state of the communication port from 1 to Jj. As definec in
Section 2, i Ff?r¥’j iff PORTij =1 at time t. (OPEN-COM is called by
ASKi and RESPONDi as the final act in a successful communicatiocn atteryt.)

1f process i executes ASKi then it first sets a flag variable Ql

¢

to 1 (to indicate to 3 that it asks) and sets another flag Bi 5 to 1 (to

’

indicate to j that it pays attention to it, i.e., i 1is not blind to answers

by 3Jj). 1t keeps these flags raised for at most a constant number CB steps

and during these steps it continuously examines the flag Aj i {the answer

’

flag of 3j). If the interval finishes with no answer from target, then 1
firet Bi . to O (to show that it stops paying attention to 3j) and t-.c¢+ it

sets Qi . to O to dror the question. This order cof actions guarantees that

’

process j will interpret correctly what it sees from the flaas of 1.

If i gets an answer from 3j (that is, if A, i is set tc 1) during

’
the (previously discussed) g steps, then i first sets Qi 3 to C (Lut
’
keeps Bi ; to its current value to indicate that it continues to pay

attention to 3j). Process i waits until j also zeros its flac A

G 1,7
and then process 1 calls OPEN-COMi(j) immediately. As the analysis shows,
the events leading to this call guarantee that communication is achieved

between i and 3j during the execution of OPEN-COM, assuming i and 3

are tame (we do not use a handshake protocol within OPEN-COM since certain

wd -
- oLy, - Slevenae——y - eI e Xmee ey e -—-‘
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technical constraints (see Lemma 4.6) of our analysis would be violated
(namely, if i is tame but 3 is not, 1 would unnecessarily delay in
OFEN-COM and this would cause problems to communiczation between 1 and

other tame rrocesses). At the end of COPEN-COM, 1 sets Bi 3 to 0 (showing

’

that it stops paying attention to j) and exits procedure ASKi.
If process 1 executes rrocedure RESPONDi (asker), then it first

examines if is 1 (i.e., if asker is interested in communicating

I}
*asker,i

with 1i). If so, then 1 sets A, to 1 and waits until process asker
i,asker {

zeros its gquestion flag(this is the "handshake" technigue). When this

hagppens, then i tests Easker i to see if process asker still payvs attarntion
- ’

to 1i. If not, then i =zeros its answer flag A. and exits. Else,
i,asker

i nows that asker waits for ster synchronization and communication. So,

i zeros its flag A,

and calls OPEN-COM. (asker). The analysis E
i,asker 1 :

shows that the events leading to this call guarantee that communication will
be achieved.

We now 1introduce some terminology and then develogp the algoritnms in
full detail.

A process i is in the asking mcde when it executes procedure ASK,
and it is in the responding mode when it executes the procedure RESPOND. If
i is executing ASK(j) and Bijz 1 then i is in a watehing window for
grocess j else i is blind with respect to 3j. We say i is answered Ii
j if i 1is in its watching window for j and 1 exits lopp A3 of procedure
ASKi with a=1. A phase of the algorithms consists of the steps between
random choices of the variable b€ {0,1}. If b=0 the process is in a
responding rhase and else it is in an asking phase.

We have not elaborately commented on our procedures because of the

extensive informal description preceding them.

———recw < T : J
. s et . j
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The variables of process 1 are initialized as follows:

INITIALIZE. ( );
BEGIN
for all 3F€T such that {i,j}€H do
BEGIN
Qij +0
A . +0
1)
B .+0
13
PORTi_.‘ +«0
END ?
END

In the following two procedures, we assume a register CURSTEF which
gives the current number of the steps executed by process 1 since it was
last zeroed. (CURSTEP is assumed here only as a convenience, it is clear
that we could substitute instead a new variable that is incremented on
every step of the original Algorithm.)

We have made extensive use of time outs to guarantee that the number
of steps of the execution of procedures RESPOND, ASK are each always
exactly the same. (This is crucial to our proof of real time response.)

We define the parameters appearing in the procedures:

Tmax, ‘max

Let c¢c_ =74+ (12+4 —) ——

R r r

min “min
steps always required by procedure RESPOND (see justification in Lemma 4.3).

; this will be precisely the number of

r
Let m= (v+3) 02X 4 1. Let Cp = Cg Mi this will be the number of steps

b S
min
required by procedure ASK. Let Cp =€y~ Cgi this is the number of stegrs
r
m N
required for a watching window. Let cP==24-3 z ax ; this is the number of
min

steps required in procedure OPEN-COM. Let Cp=Cp~Cp- 2 and Cp=Cp~ 7.

These parameters are used to time-out the execution of various loops in our

algorithms.
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PROCEDURE ASKi (target)
local a

BEGIN
Al: CURSTEP <O
. -«
A2: Qi,target 1
a+o
+«1
Bi,target

COMMENT: Begin watching window for target
A3: WHILE CURSTEP<c AND a=0 DO a<+a .
_— B —— - target,1

AND a=0 THEN B. +«0

IF CURSTEP > c
= -~ i,target

-
Qi.target ©
IF a=1 THEN

B

BEGIN
. = < « .
Ad: WHILE(Atarget,i 1 AND CURSTEP<cp) DO a*A . ... ;
AS: IF a=0 AND CURSTEP <c  THEN OPEN-COM, (target)
END
COMMENT: End watching window for target

“
Bi,target 0

WHILE CURSTEP <c¢, DO a nonoperative step.

A
END

PROCEDURE RESPONDi (asker)
local g

BEGIN CURSTEP+ 0

q<-Qasker,i

Bl: IF g=1 THEN

BEGIN
<+
Ai,asker
. < = -~
B2: WHILE(CURSTEP <c_ AND q=1) DO q%Q ...
« R B, = OR CURSTEP >
3¢ (q OR i,asker OR CURSTEP > cg)

B3: A, +0

i,asker
IF +g THEN B4: OPEN-COM, (asker)
B5: WHILE CURSTEP <c, DO a nonoperative step

END
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PROCEDURE OPEN-COMi(j)

BEGIN
PORT . «1
1]
Do cP— 2 nonoperative steps
PORT, <O
1)
END

4.A. Correctness Properties of the Algorithms which Hold with Certainty

Our algorithms are probabilistic and therefore some of their
properties (such as response time) only hold with a certain rrcratilicy,
and not with certainty. A probabilistic analysis of these properties is
given in the next sections. However, in this section we prove properties
of the algorithms which hold with certainty, regardless of probabilistic
choice. We show restrictions Rl, R2 are satisfied by our implementations,
and thus they are proper. (Of course, we assume either all the processes

in 1l execute Algorithm 1, or they all execute Algorithm 2.}
LEMMA 4.1. For both algorithms,

i—r~3 onlyif i< .

Proof. Process i calls OPEN-COMi(j) and opens its channel to
j only if either (a)i was executing an asking phase and exited the loop
A3 with a=1 or (b)i was executing a respond phase and exited the busy
wait B2 with Bj'j_=1. In both cases, i was willing to communicate with

j in the start of the execution of its phase, since i asks (or responds)

only to processes it is willing to communicate with. So, i e j where




t' was the time of start of 1i's phase. By assumption (A2) then,

s
i23.
In case (a), a=1 means that 3j responded by setting Aj i to 1
[
to 1i's gquestion. So, j o i for some t"<t and by assumption (A2),
< s
jgi.

In case (b), Jj was the process setting Qj i to 1 at the beginning
’

of i's phase. Hence j E? i and, by (A2), 3 ??i.

In both cases, 1 —Ag“* j implies i ﬁ? j. o

LEMMA 4.2. For both algorithms,

o isa partial matching.
Proof. Since each process opens communication to at most one process
each time, (this is so since the programs in both algorithms are sequential
and each neighbor is asked or responded to separately), the relation —Ag”ﬂ

is one to one. Hence *”g“* cannot be more than a matching. Q

COROLLARY 4.1. Both algorithms give a proper implementation cof DCS.

4.B. Timing Lemmas Which Hold With Certainty

Timing is an important aspect of our algorithms. The following

lemmas are essential, but somewhat tedious to prove.

LEMMA 4.3. Assume 1i,j are tame. For both algcrithms, if i tis

angwered by j, then i, have successful communication, within

r
max
r

(12+4 ) 8teps of the slower of i,j from the time i exits loop A3.

min




Proof. 1If 1 exits the A3 loop with a=1, then (since no process

but Jj can assign to Aj i) at the same time 3j must be executing
.

RESPONDj(i) at the B2 loop. Process 1 will arrive at A4 within 4 of its
steps and will have by then set Qij to 0. These 4 steps of i corresrond

to at most 4 r /r . steps of Jj, during which j will have exited the
max’ ‘min

B2 loop. Also at this time, the assumption that i exits the loop A3

with a=1 implies that Bij =1l. So, j will arrive at B3 and set Aj

PP

to 0 in at most 4 of its steps from the time it exited the B2 loog.

Within «r /r . steps of 1, process i exits the A4 loop. Then,
max’ “min

within two of i's steps i will call OPEN—COMi(j) and within one of
j's steps Jj will call OPEN—COMj(i). Note that both 1i,j will set
their respective port flags PORTij, POR.Tji to 1 within one step of the

slower process (or, within at most «r /r

. steps of the faster). They
max’ “min

keep their ports open for Cp - 2=3r /X

. steps each. This implies
max’ “min

that both processes will overlap for at least 2(rmax/rmin)-rmin==2 T ax

time, guaranteeing at least 1 step overlap of both processes. Thus, i,3
have successful communication. Note that OPEN-COM takes p steps.
Counting steps of 1 plus those of j in nonoverlarping time intervals,

we have a total of 4+4+r /x

" + . .
max min-+2-+cp 12+4 r /x which is

max’ min

certainly an upper bound to the steps of the slowest of the two processes.OD

LEMMA 4.4. For both algorithmg, if i,j are tame on L' and
i Al for a maximal interval A', then A' contains at least a stey
of both i and 3 and |A'|=0(1). (Thie ensures that A' 1is just

long enough for i,y to commnicate.)




o w

Proof. The only sequence of events leading to this is the sequence

in which one of 1i,j 1is in its watching window for the other and is
answered by the other. By Lemma 4.3, then, A' contains a step of both
i,j. Since A' 1is not greater than p steps of either process, then
2] = pTmax - *Fmax ¥ rrf\ax/rmin'

LEMMA 4.5. For both algorithms, if 1,3 are tame on A and
i =4 3 for a maximal interval B, then i <{7— 3 for some b'cl.
Furthermore 1i,j have successful commnication during L'. (I.e., a tame
proczss never opens tts channel to another tame process without communiecating
with it.)

Proof. The only sequence of events leading to i emKA—»j is the
sequence in which one of 1i,j was in its watching window for the other

and is answered by the other. By Lemma 4.3, 3A'cA such that 1i,j have

successful communication during A4°'. D

In the following lemma, we need not necessarily assume that i is
tame.

LEMMA 4.6. If 1i€Il executes procedure ASK, then precisely oA

steps of i are required for the execution of this procedure. Ezecution

of RESPOND by i requires precisely cp Steps of i. Also, cach phase

of either Algoritim 1 or Algorithm 2 requires exactly cpt+2 steps.

Proof. By observation of timeouts within the procedures ASK and

RESPOND and by the definition of cA==m-cR. ]

Let c=m/v-c Then c-v 1is the number of steps required for each

R
phase.

COROLLARY 4.2. The time required for each phase is upper bownded Ly

S
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5. PROBABILISTIC ANALYSIS OF THE RESPONSE TIME OF THE ALGORITHMS !

Intuitively, in both algorithms, the ASK or Respond phases take
O(v) time each. In the worst case of the non-preferential algorithm, it
requires O(v) expected executions of the ASK phase to choose any given E |
willing neighbor, if the set of willing neighbors is O(v). Given that

a given neighbor is chosen and he is willing, communication will be “

s

achieved with probability bounded below a constant. Hence, we expect
the average time of response of teh non-preferential algorithm to be

ov?).

On the other hand, in the asking phase of the preferential algorithm
we ask a specific neighbor and we have a constant probability to i
communicate with him, if he is willing. Thus, the expected total number
of phases will be 0(1) and so the expected response time of the
preferential algorithm will be O(v) in the worst case.
A formal analysis follows:
By Corollary 4.2, cv is the total number of steps of the asking or
responding phase and fix throughout this section I to be an interval,
starting at time to, of length at least 4 phases (i.e., |I|2_4cvrmax).
Let Ft be the global system history up to tO and let &/ be a
fixed ogacle. Note that (uﬂ,rt) essentially specifies everything of the
system's immediate future except "luck" Lt' for t'>‘t0. Consider two :

processes i,j such that {i,j}€H and i4?-j and i,j tame on 1I.

Let t_=ndn{t:>tolj does a phase selection at t} and
J
t, =min{t > toli does a phase selection at t}.

Let tm-=max(ti,tj) and let ti ot (and t._,t..) be the next two

1

i2 j1° 32
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phase selections of i (and Jj respectively) after tm such that

<t . <¢t,
tm il i2
and
t <t _<t .
. S b R
Let
tM = maX(tiZ'tj2) .

The interval (to,tM] is called a sesston S of processes 1i,3.
(See Figure 2). Note that a session has <3 phases of one of the
processes 1i,j and hence its length is i3cvrmax.

Let oij(vczl,l‘t ) be the probability that i,j will establish
0
communication during session S= (to,tM] given (JJ,Ft ).
0
Let ¥ be the class of oracles  for which the outdegree dt is

set equal to v for all nodes i in Gt and for all instances t.

PROPOSITION 5.1. The response time of Algorithm 1 increases with

increased requests to communication,

Proof. The probability that a specific process is chosen in the ASK
or RESPOND phases decreases monotonically; with the number of processes to

which the process executing ASK or RESPOND is willing to communicate. o

By Proposition 5.1, the class of oracles ¥ gives an upper bound in
the response time of the system, since adding requests to communicate
cannot decrease the response time.

COROLLARY 5.1. For oracles o €€, oij(.,-ul,l‘t ) <1/v for the

0
nonpreferential Algorithm 1,

T e
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Consider the event E = {process i is in the responding phase in ¥

the interval Ai=-[til,ti2) and process Jj is in the same asking phase |

and waiting in a watching window for i, for at least (v/2)'cR steps of

process i during Ai}. Let xij(ai,rt +E) be the probability that 1i,j §
0
will establish communication during session S==(t0,tM], given (., )

o

and event E.

PROPOSITION 5.2.

xij(ul,Tto,E)-Prob(E glven(al,Tto)) < Oij(dl,rto) .

(Proof easy).

Note that for both algorithms the following holds:

PROPOSITION 5.3.

v/2
1 _ =172
xij(t,vl,l"t yE) >21- (1 - v) >1l-e '

(o]

[*X

since given E, it is enough for to select 3j as the process tc ansuer

for at least one of the at least

<

consecutive answering intervais whicr

overlap with the watching window of 5.
THEOREM 5.1. For Algorithm 1, we have

Prob(E given (& ,T_ )) > 1
to 4v

Proof. The length of a watching window cf J is cB==cR'(m-1)

steps of j, which is at least cR'(m-l)-rmin time, which is at least

. 1l
cR (m l)rm. .

> +
in 2 cgv*d)
max

steps of 1i.

TS e <. J
b eSS e s - ek LT




Let Ai==[t ). The interval Ai either contains at least

i1'%i2
half of a phase Aj of 3j, or half of it is contained in a phase Aj

of Jj. (See Figure 3). In either case, given that j is asking i 1

during Aj and that i 1is responding during Ai, there is an overlap

of the watching window of the phase Aj of j and of phase Ai of i

3
which contains at least cp’ % steps of 1. Since both phases Lj and ]
E

Ai were selected in the session S after to, during probability of j

asking 1 during Aj is  >1/2v and the probability of i answering

during &i is 1/2. Our theorem follows by multiplying these probabilities.n

THEOREM 5.2. For Algerithm 2, we have

Prob(E given (./,I  )) >
to -

o | =

Proof. Same as in 5.1. The only difference is that now 3j insists

on asking i and hence prob(j asking i given j in asking phase and

preferring i) = 1. o]
Let
o . =+ (1-e¥?, o =31 for Algorithm 1
min 4y max v
and
1 -1/2 _ .
Orin = (1-e ), omax =1 for Algorithm 2 .
THEOREM 5.3.
< < < < .
0 omin—cij('Jl,'rt'.o)—Omax—l
Proof. By Theorems 5.1, 5.2, Propositions 5.2 and 5.3 and
Corollary 5.1. o




Note that our lower bounds on xij(ad,ft ,E) and prob(E given
0
(df,Tt )} do not depend on A or Ft . This is so because all inequalities
0 0
hold for any possible speed ratio of processes 1i,j and because the results

of choices of phases for times tj:tm in session S do not depend on

or T .
tO

Let Pij(kl(ai,rt )) be the probability it takes exactly k

0
sessions for processes 1i,j to succeed in establishing communication,

given that iﬁg>j (for 1 Tf j and j Z i) for a time interval 2

starting at tO' such that A < I.

Let SO==to, Sl,...,Sk_l be the starting times of these sessions.

‘Then, by Baye's formula,

Pij(k}(d,l"t )) = (1—oij(.,d,1"s

o ))'(l-Oij(ad,Ts ))

0 1
... (1-0, .(uf,Ts ))o. . (AT )
3] k-2 1 k-1

Since for all &/, all Tt

o . <o, (T ) <o

min max

we have

k-1
Pys (x| (.ﬂ,rto)) < Opay (170 . )

and
k-1

Pis (x| (J,rton >0, (-0 ) .

By using the above inequalities and calculating the ‘-ean, we get

LEMMA 5.1.
omJ.n Omax
< mean(k) <
2 - - 2
(c__) (o .
max min

|
i
s
¥
|
|
!




and, by known expressions about tails of geometrics, we get

LEMMA 5.2. Ve, 0<g<],

> < ;
Prob{k kmax(s)} € y

where %
k (e) = loq‘(omin'g)/cmax) '
max log(l-0_. ) ’
min
Recall 3cvrmax is an upper bound on a session length. Lemmas 5.1

and 5.2 imply

THEOREM 5.4. If T <8 the response of the system, then

o
max
mean(T) < 3cvr + —
- max 2

(omin)

o Aoin oy
b -

i A~ ~

and if T(e) 18 the g-error response, then

T(€) < 3cvr °k (€)
- max max

r
fjax c and the O , O, of Theorems 5.1
X R max min

By using ¢ = (1 + %)
min

and 5.2, we get

COROLLARY 5.1. For Algorithm 1

mean (T) < 48(1-e'1/2)'2-(r:m/rmin’ca(l * %) -V
or
mean (1) = O(Vz)
and log (%- (l-e-l/z)) 4
kax(€) = 109(1 _ 4% (1_6-1/2)> = O(V log (s))




k() = ofv? 10q(2
T(€) j_3cvrmax kmax(e) = O(V log(e)) .

Also, by using the derived O . , C for Algorithm 2 we get
min’® “max

COROLLARY 5.2. For Algorithm 2,

r
mean(T) < 48(1-e'1/2)'2-(—‘“9§)-c -(1 + 3)-v = O(v)
- Y . R v
min
and
log(% (l-e_l/z)) 4
k (g) = —L = O(log(—))
S e e
imp lying

T(e) = O(v 1og(§)) X

6. CONCLUSION

We have provided two real time implementations for the DCS system.
A key assumption on our time analysis is that processes have to be tame
during attempts to communicate, but at other times processes need not be
tame. This improves a previous version of this paper [Reif, Spirakis,
1981A], where we required processes to be tame at all times.

A referee has suggested a modification of our algorithms which may
be of practical use in speeding up the expected time response in some
practical cases. The modification presumes that the connections graph
has fixed valence (otherwise, an infinite number of variables per process

is required). The idea is to allow each process to have additional flag
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variables which indicate to other processes its willingness to communicate
with them. (We had presumed that the set Ei can only be read by process
i), so the idea requires additional flag variables. Those modified
algorithms will have worst case performance identical to those given in
our raper.

In a further paper, [Reif, Spirakis, 1982], we have relaxed our
assumption of tameness. 1In that paper we require only bounds on the
relative acceleration of ratios of speeds of neighbor processes. We
propose there synchronization algorithms which have relative real time
response, where communication is established with high probability

between any pair of processes within constant number of steps of the

slowest process. However, these algorithms are less efficient than those é
given in this paper. Also, in the Appendix of [Reif, Spirakis, 1982}, ;
we are applying our synchronization techniques to ADA for a relative real

time implementation.
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APPENDIX
A REAL~TIME IMPLEMENTATION OF CSP

{Hoare, 1978] introduced a concurrent programming language CSP
(for Commnicating Sequential Processes). The CSP language is notable
for the .legance of its synchronization constructs: They are powerful
and yet simple. [Bernstein, 1980] describes an extension of CSP which
ailws both input command and output commands as guards. Here we briefly
describe CSP with Bernstein's extension and present s real-time implemen-

tation of the synchronization constructs.

CSP Synchronization Constructs

The relevant aspects of CSP concern its process structure and com
munication mechanisms. Concurrent execution of processes Pyo Pyo eves P
is denoted

Ie, Il 2, |l eooll rJl.

Zach process has its own set of variables which are inaccessible to all
other processes. The communication primitives are the output commmd

’j fu that requests that rj receive the value of v anq input command
P‘?x wvhich requests that l’1 send a value which is then assigned to «x.

There are two relevant compound statements. The altemative statement

[cl-oclncz-oczn...ack-ockl




contains guards Gl""'ck and command lists cl""’ck’ Each guard consists
of a list of elements which may be a sequence of booleans, followed by at most
one input command or (in Bernstein's extension of CSP) an output-emnnd.

The exscution nondeterminately chooses a guard Gi which is satisfied

(to test that, it executes each element of G, fram left to right) and then

i
executes the corresponding command list Ci. If no guard is satisfied, the

alternative statement fails. The repetitive statement
.[Gl"cln oo <] Gk'.ck]

results in the repeated execution of the alternative statement

lcl *C

Note that the crucial problem in implementing CSP is to synchronize

o ...DGk*Ck]. until no guards are satisfied.

executions of input commands P j?x by process l’1 with output commands Pi!u
by process Pj so that the value u is transmitted to x.

It is very easy to implement CSP by DCS. (In fact, this was the
original motivation for our work on DCS). Llet € be a system-wide constant,
which may be fixed to any arbitrarily small constant on the interval (0,1).
We assume a 1ozl time DCS implementation with E-error response time T(€).
let ¥ De the maximum number of guards appearing in any alternative or
repetitive statement; we assume that v {s constant relative to the total
number n of processes. We also assume that the length of the guard lists
is homd.é by a small fixed constant. We also assume all processes reliably
emscute their programs and satisfy assumptions Al and A2.

Our CSP implementation is real-time in the sense that there exists a
‘positive integer L (which is independent of the number of processes n)

such that £{f in same alternative or repetitive statement 8§ some guard G




48 continuously satisfied for a time interval A of length &£ and if the

processes of G and the process executing the statement are tame on &,
then the command list associated with some satisfied guard is immediately
emscuted with probability & 1-¢ and otherwise, a failwre exzit is always
made immediately after a time interval of length £. Therefore, we allow

a failure exit with probability <€, even though some guard may be satisfied.
3 i P
is willing to communicate with Pj. Also, to

To attempt to execute an output command P_!u in process P

sets Pi_’Pj' indicating Pi

attempt to execute an input comand P _?x in process Pj. Pj sets Pj-pPi.

i
If successful communication is established by l’i and Pj’ the process Pj

immediately transmits value u to variable x in P,; and immediately

i

thereafter P, sets Pi-ﬁl’j and P, sets Pj-ngi.

i 3

An alternative or repetitive statement S may contain the execution
of one of several guarded input commands and output commands, say

Gl""'Gs where s€v. 7o execute the statement §, ’1 first executes the

booleans appearing in each guard. Let R be the set of processes appearing

in those guards of § all of whose booleans evaluate to true. Pi must set

’1-»5 sz each P,En for a time interval of length Rs=T(c). At the

f£irst time that an appropriate communication is established between Pi and
some willing process PjE R, P’_ must immediately set P‘-ﬁ Pj' for all

Pj,ER and then P, must axacute the command list associated with the now

satisfied guard in the statement §. Otherwise, if no appropriate communica-

tion is established within time t(e), t‘ must then exit the statement S

with failure. MNote that the probability of an incorrect failure exit is <t.
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Figure 1lA. The connections graph H 1in the case of a ring network
of five processes.
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The open-channel graph Mt'
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